304永利登录入口

学术动态

位置: 首页 > 科学研究 > 学术动态 > 正文

学术报告五十五:乔中华- An Active Contour Model with Local Variance Force Term and Its Efficient Minimization Solver for Multi-phase Image Segmentation

时间:2022-06-16 作者: 点击数:

报告时间:2022年07月06日(星期15:00-16:00

报告地点:腾讯会议 769647913

人:乔中华 教授

工作单位:香港理工大学

举办单位:数学与统计学院

报告简介:

In this paper, we propose a general active contour model with a local variance force (LVF) term that can be applied to multi-phase image segmentation problems. With the LVF, the proposed model is very effective in the segmentation of images with noise. To solve this model efficiently, we represent the regularization term by characteristic functions and then design a minimization algorithm based on a modification of the iterative convolution-thresholding method (ICTM), namely ICTM-LVF. This minimization algorithm enjoys the energy-decaying property under some conditions and has highly efficient performance in the segmentation. To overcome the initialization issue of active contour models, we generalize the inhomogeneous graph Laplacian initialization method (IGLIM) to the multi-phase case and then apply it to give the initial contour of the ICTM-LVF solver. Numerical experiments are conducted on synthetic images and real images to demonstrate the capability of our initialization method, and the effectiveness of the local variance force for noise robustness in the multi-phase image segmentation.

报告人简介:

乔中华博士于2006年在香港浸会大学获得博士学位,现为香港理工大学应用数学系教授。

乔博士主要从事数值微分方程方面算法设计及分析,近年来研究工作集中在相场方程的数值模拟及计算流体力学的高效算法。他至今在SCI期刊上发表论文60余篇,文章被合计引用1300余次。他于2013年获香港研究资助局颁发2013至2014年度杰出青年学者奖,于2018年获得香港数学会青年学者奖,并且于2020年获得香港研究资助局研究学者称号。


上一篇:学术报告五十六:曾超-Nonconvex optimization for image restoration

下一篇:学术报告五十四:张强- Error estimate to smooth solutions of high order Runge-Kutta discontinuous Galerkin method for scalar nonlinear conservation laws with and without sonic points